Содержание
- 1 Турбонаддув – назначение, устройство и принцип работы
- 2 Описание и принцип работы турбонаддува двигателя
- 3 Устройство турбины и принцип работы турбокомпрессора на дизельном двигателе
- 4 Турбонаддув – изучаем принцип работы
- 5 Принцип работы турбины: описание, устройство, особенности :
- 6 Устройство и принцип работы турбины
Турбонаддув – назначение, устройство и принцип работы
Турбонаддув – это такой способ агрегатного наддува, при котором подача воздуха в цилиндры двигателя происходит под давлением, нагнетаемым действием энергии отработавших газов. Сегодня такой метод – самый эффективный, призванный увеличивать мощность двигателя, не повышая объёма его цилиндров и частоты вращения коленчатого вала.
Кроме этого, использование турбонаддува даёт экономию топлива в соотношении расхода к мощности и уменьшает токсичность отработавших газов, осуществляя более полное сгорание топлива.
Применение турбонаддува
Обратите внимание
Применение система турбонаддува находит на обоих типах двигателей – и на бензиновых, и на дизельных. Однако на последних она гораздо эффективнее за счёт их более высокой степени сжатия и сравнительно небольшой частоты вращения коленчатого вала.
Использование же турбонаддува для бензиновых двигателей ограничено, во-первых, вероятностью наступления детонации, обусловленной значительным увеличением оборотов двигателя, а во-вторых, перегревом турбонагнетателя из-за повышенной температуры отработавших газов – около 1000°С, в то время как у дизелей она составляет порядка 600°С.
Устройство
Основная часть компонентов турбонаддува – это типовые элементы впускной системы. Присутствие же в системе турбокомпрессора, интеркулера и конструктивно новых элементов управления становится отличительной особенностью именно турбонаддува.
Хотя конструкции отдельных систем турбонаддува и различаются, можно обозначить их общие компоненты. Помимо вышеперечисленных турбокомпрессора, интеркулера и элементов управления это воздухозаборник с воздушным фильтром, дроссельная заслонка, впускной коллектор, напорные шланги и соединительные патрубки, а в некоторых системах ещё и впускные заслонки.
Турбокомпрессор или турбонагнетатель — главный конструктивный компонент системы турбонаддува. Он нагнетает воздух во впускную систему.
Его устройство выглядит следующим образом:
Устройство турбонагнетателя:
1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.
Турбинное колесо, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорное колесо.
С его помощью воздух всасывается, сжимается и подаётся в цилиндры двигателя. Оба эти колеса жёстко закреплены на роторном валу, вращающемся на подшипниках скольжения плавающего вида. Интеркулер является радиатором жидкостного или воздушного типа.
Он охлаждает сжатый воздух, увеличивая его плотность и давление.
Главный элемент управления системой турбонаддува – это регулятор давления наддува, он, по сути, является перепускным клапаном (wastegate).
Важно
Его задача – ограничивать энергию отработавших газов и направлять часть их потока в обход турбинного колеса. Таким образом, достигается оптимальная величина давления наддува. Привод перепускного клапана – электрический или пневматический.
Для его срабатывания система управления двигателем подаёт сигнал от датчика давления наддува.
Как работает турбонаддув
Принцип работы турбонаддува берёт за основу использование энергии отработавших газов. Их струя заставляет вращаться турбинное колесо, передающее вращение через роторный вал компрессорному колесу. С помощью последнего происходит сжатие воздуха и его нагнетание в систему.
Принцип работы турбонаддува
Интеркулер охлаждает воздух, нагретый при сжатии, после чего тот подаётся в цилиндры двигателя.
Хотя система турбонаддува и не связана жёстко с коленчатым валом, её эффективность напрямую зависит от частоты оборотов двигателя. Увеличение оборотов коленчатого вала ведёт к повышению энергии отработавших газов и, соответственно, частоты вращения турбины, что влечёт за собой более интенсивное поступление воздуха в цилиндры двигателя.
О отрицательных особенностях турбонаддува
Конструкция системы турбонаддува обуславливает некоторые отрицательные особенности, возникающие при её работе.
Одна из них – эффект «турбоямы» (turbolag): при резком нажатии на педаль акселератора увеличение мощности двигателя происходит с задержкой.
Причина этого в инерционности системы: нужно определённое время для увеличения давления в наддуве, если на газ нажали резко.
Избежать этой ситуацию становится возможным, либо применяя турбину с изменяемой геометрией, либо используя два турбокомпрессора, работающих параллельно или последовательно (bi-turbo или twin-turbo), либо задействовав комбинированный наддув.
Второй неприятный момент – это «турбоподхват»: вслед за преодолением «турбоямы» происходит резкое увеличение давления в наддуве.
Турбина с изменяемой геометрией или VNT турбина, способна оптимизировать движение потока отработавших газов, меняя размер входного канала. Наиболее распространены такие турбины в серийных системах турбонаддува дизельных двигателей известных автопроизводителей (например, TDI у Volkswagen).
Турбонаддув с двумя параллельно работающими турбокомпрессорами находит большее применение для мощных V-образных двигателей. При этом на каждый ряд цилиндров двигателя работает свой турбокомпрессор. Выигрыш получается за счёт распределения инерции с одной большой турбины на две маленькие.
Совет
В случае установки двух турбин в последовательном режиме выигрыш производительности достигается путём работы разных турбокомпрессоров для разных значений оборотов двигателя. Изредка встречаются случаи установки трёх турбокомпрессоров последовательно (triple-turbo, например, у BMW), ещё реже – четырёх (quad-turbo у Bugatti).
При комбинированном наддуве (twincharger) совместно используется турбонаддув и механический наддув. Сжатие воздуха при низких оборотах коленчатого вала происходит с помощью механического нагнетателя. С увеличением оборотов в работу включается турбокомпрессор, а при достижении их определённой частоты работа механического нагнетателя прекращается (например, TSI у Volkswagen).
Видео — как работает турбина:
Применение турбонаддува особенно эффективно для дизельных двигателей мощных грузовиков: расход топлива увеличивается ненамного, зато мощность двигателя и крутящий момент заметно повышаются.
Турбокомпрессоры, наиболее мощные в пропорции к мощности двигателя, применяются для дизелей тепловозов. По абсолютному же значению, самые мощные турбокомпрессоры устанавливаются в судовые двигатели (до десятков тысяч киловатт).
(Пока оценок нет)
Загрузка…
Описание и принцип работы турбонаддува двигателя
Среди всех возможных вариантов наддува двигателя внутреннего сгорания наибольшее распространение получил турбонаддув, в котором воздух подается в цилиндры при помощи специального устройства — турбокомпрессора (турбины).
Вращение турбины осуществляют отработавшие газы, что позволяет существенно увеличить мощность двигателя без увеличения частоты оборотов последнего. Помимо этого, турбонаддув позволяет получать большие значения крутящего момента при небольшом расходе топлива.
В сравнении с классическими конструкциями при аналогичной мощности турбированный двигатель имеет более компактные габаритные размеры.
Устройство системы турбонаддува
На практике турбонаддув применяется как на моторах, использующих дизельное топливо, так и на бензиновых.
Однако наиболее часто эта система встречается именно на дизельном двигателе, поскольку для них характерна высокая степень сжатия, меньшая температура выхлопа и низкие обороты коленчатого вала.
Более высокая степень сжатия обеспечивает повышение мощности турбированного двигателя и увеличивает его КПД.
В бензиновых моторах температура отработавших газов выше, что может спровоцировать эффект детонации, приводящий к быстрому износу поршневой группы. Для предотвращения этого явления необходимо использовать бензин с более высоким октановым числом, что не всегда является экономически выгодным.
Принцип работы турбины
Система турбонаддува состоит из следующих элементов:
- Воздухозаборник;
- Воздушный фильтр;
- Перепускной клапан — регулирует подачу отработавших газов;
- Дроссельная заслонка — регулирует подачу воздуха на впуске;
- Турбокомпрессор — повышает давление воздуха во впускной системе. Состоит из турбинного и компрессорного колес;
- Интеркулер — охлаждает воздух, способствуя лучшему наполнению цилиндров и снижению вероятности детонации;
- Датчики давления — фиксирует давление наддува в системе;
- Впускной коллектор — распределяет воздух по цилиндрам;
- Соединительные патрубки — необходимы для крепления элементов системы между собой.
Принцип работы турбонаддува
Схема работы турбонаддува двигателя
Принцип работы системы турбонаддува заключается в следующем:
- Отработавшие газы двигателя, проходя через турбокомпрессор, раскручивают турбинное колесо.
- Вращение турбинного колеса передается компрессорному, поскольку они закреплены на одном валу.
- Компрессор сжимает воздух, поступающий из воздухозаборника, и направляет его в интеркулер.
- В интеркулере воздух охлаждается и поступает на впуск в цилиндры двигателя.
Устройство турбины и принцип работы турбокомпрессора на дизельном двигателе
Турбокомпрессор — устройство, которое позволяет примерно на 30% увеличить мощность мотора, при этом отсутствует необходимость физически увеличивать объём цилиндров.
Такие агрегаты установлены практически на всех современных автомобилях, вне зависимости от типа используемого топлива.
Ниже подробнее расскажем об устройстве и работе турбины дизельного двигателя, а также обрисуем минусы этого устройства и самые распространённые поломки.
Устройство и особенности турбины
Агрегат состоит из двух устройств — турбины и компрессора. Задача первой преобразовывать энергию выхлопных газов, а второго — подавать сжатый воздух в цилиндры. «Крыльчатки» — главные составляющие части этой системы, представляют собой два лопастных колеса (компрессорное и турбинное).
По своей сути компрессор — это насос, его единственная задача заключается в подаче сжатых атмосферных воздушных масс в цилиндры.
Обратите внимание
Кислород необходим для сжигания топлива, чем больше его поступит, тем больше силовой агрегат сможет сжечь.
В результате это приводит к значительному увеличению мощности движка без физического увеличения объёма или количества цилиндров. Система турбонаддува состоит из следующих компонентов:
- корпус компрессора;
- корпус турбины;
- корпус подшипников;
- компрессорное колесо;
- турбинное колесо;
- ось или вал ротора.
В турбонаддуве основным элементом выступает ротор, который защищается корпусом и крепится к специальной оси. И сам ротор, и корпус турбины изготавливаются из термостойких сплавов — это необходимо из-за того, что они находятся в постоянном контакте с газами высокой температуры.
Ротор и крыльчатка вращаются в разных направлениях с большой скоростью — такое решение обеспечивает их плотный прижим друг к другу. Принцип работы в следующем:
Благодаря такому принципу и обеспечиваются вращение турбины. Что касается оси турбонагнетателя, то она крепится на специальных подшипниках скольжения и смазывается за счёт поступления жидкости из моторного отсека.
Утечка смазочной жидкости предотвращается благодаря наличию прокладки и уплотнительным кольцам. Кроме того, дополнительную герметизацию обеспечивают смешанные и отдельные потоки отработанных газов и воздуха.
Такое технологическое решение не обеспечивает гарантии в 100%, что выхлоп не попадёт в сжатый воздух, однако система этого и не требует.
Что ещё входит в систему турбонаддува
Турбина — сложный агрегат, инженерам потребовалось несколько десятилетий, чтобы довести систему до ума. Только на первый взгляд решение компенсировать потери КПД за счёт выхлопных газов кажется простой. Даже после создания устройства у него долгое время наблюдались определённые проблемы.
Например, не удавалось решить проблему турбоямы — задержки после нажатия на педаль газа и запуском ротора. Решение нашлось в виде использования двух клапанов.
Один из них использовался для вывода излишек воздуха, а второй предназначался для выхлопных газов.
Кроме того, современные турбины имеют изменённую геометрию лопаток, что серьёзно их отличает от подобных устройств второй воловины XX столетия.
Можно выделить ещё одну проблему, которая заключалась в излишней детонации — с ней тоже успешно справились современные инженеры. Проблема заключалась в том, что температура в рабочих секторах цилиндров резко увеличивалась во время нагнетания воздуха, особенно в последней стадии такта. Решение нашлось в установке интеркулера (промежуточного охладителя воздуха).
Интеркулер — устройство для охлаждения наддувочного воздуха. Он выполняет сразу две функции — препятствует детонации и не даёт уменьшиться плотности воздуха. В результате удалось сохранить работоспособность всей системы.
Также стоит отметить и другие важные составляющие турбины.
Регулировочный клапан. Отвечает за поддержание заданного уровня давления, излишки давления поступают в приёмную трубу.
Перепускной клапан. Используется для вывода излишних воздушных масс обратно во впускные патрубки — это нужно для снижения мощности при её избытке.
Стравливающий клапан. Если дроссель закрывается и нет датчика массового расхода воздуха, клапан будет возвращать излишки воздуха обратно в атмосферу.
Патрубки. Герметичные отрезки трубы. Одни используются для подачи воздуха, вторые для подачи смазочного масла.
Выпускные коллекторы. Должны быть совместимы с турбокомпрессором.
Принцип работы
Для начала нужно разобраться с двумя терминами.
Турбоподхват — состояние, при котором быстро вращающийся ротор увеличивает подачу воздуха в цилиндры, благодаря чему повышается мощность силового агрегата.
Турбояма — короткая задержка, которая возникает в работе турбины при повышении количества поступившего топлива во время нажатия педали газа. Задержка появляется из-за того, что ротору необходимо некоторое время, пока газы его не разгонят.
Турбонаддув повышает давление выхлопных газов за счёт более интенсивной работы мотора, но в то же время увеличивается и давление наддува.
При достижении критических величин может произойти поломка, а потому этот процесс необходимо контролировать. За регулировку давления отвечают клапана, а мембрана и пружина следят за предельно допустимыми значениями.
Важно
При достижении определённой величины мембрана открывает клапан для стравливания давления.
Работа турбины на дизельном двигателе нуждается в контроле давления, который осуществляется следующими процессами:
- если поступило слишком много воздуха, компрессор (используя клапан) освобождается от излишков;
- клапан стравливает давление в случаях, когда воздуха поступило слишком много — при этом агрегат работает стабильно и забирает ровно столько воздуха, сколько требуется.
Работа турбокомпрессора на дизельном двигателе
Работа осуществляется по следующие схеме:
Получается интересное взаимодействие. Ротор вращается быстрее — больше поступает воздуха. Чем больше воздуха поступает — тем быстрее вращается ротор.
Минусы турбины на дизельном двигателе
Как и любое устройство, у турбины есть свои положительные характеристики (которые были описаны выше), так и недостатки.
К минусам можно отнести в первую очередь увеличенный расход топлива, особенно это касается неправильно отрегулированных агрегатов.
Второй минус — чувствительность к качеству топлива, что особенно актуально в российских условиях. Дело в том, что некачественный дизель может привести к детонации. Отметим и другие недостатки:
- общее удорожание двигателя;
- повышенная требовательность к моторному маслу;
- масло и фильтры приходится менять чаще (примерно каждые 5-6 тыс. км);
- нужно часто менять воздушный фильтр;
- ресурс турбины на дизельном двигателе значительно ниже, чем на бензиновом (из-за более высокой температуры выхлопа);
- средний ресурс агрегата составляет 200-250 тыс. км, после чего потребуется замена или, как минимум, капитальный ремонт;
- достаточно сложный ремонт, провести его среднестатистическому автовладельцу самому не получится.
Однако стоит отметить, что плюсы всё-таки перевешивают минусы. В противном случае турбины не пользовались бы такой большой популярностью.
Видео по теме:
Основные неисправности — признаки и причины
Сразу стоит оговориться, что основная причина поломок — это несвоевременное техническое обслуживание агрегата, его рекомендуется проводить минимум один раз в год. Следующая причина — низкое качество масла, либо его несвоевременная замена.
Третья — попадание в устройство посторонних предметов (например, мелких камушков). Наконец, четвёртая — банальный износ отдельных компонентов турбины, ведь у каждого оборудования есть свой срок эксплуатации.
Теперь опишем признаки, которые могут говорить о неисправности.
Чёрный дым из выхлопной трубы. Топливо сгорает в интеркулере или нагнетающей магистрали. Скорее всего — неисправность системы управления.
Сизый дым. Возможно, из-за нарушения герметизации турбины масло просачивается в камеру сгорания.
Белый дым. Сливной маслопровод загрязнился, потребуется его чистка.
Повышенный расход топлива. Воздух не доходит до компрессора.
Увеличен расход масла. Нужно проверить стыки патрубков — возможно, нарушена герметичность.
Уменьшение динамики разгона. Скорее всего вышла из строя система управления, из-за чего возник недостаток кислорода.
Посторонний свист, скрежет или шумы. Это может быть изменение зазора ротора, дефект в корпусе, утечка воздуха между двигателем и турбиной, либо загрязнение маслопровода.
Всегда нужно соблюдать правила эксплуатации агрегата — это снизит вероятность появления поломки и продлит срок службы устройства. Следует придерживаться нескольких простых правил:
- следите за качеством топлива и масла;
- не забывайте вовремя менять масло и фильтры;
- начинайте движение только после того, как движок прогреется;
- после прекращения движения нужно дать мотору поработать на холостых, а не сразу его выключать.
И, конечно же, следует регулярно проходить ТО.
Что делать, если турбина сломалась
Если обнаружилась неисправность первое, что нужно сделать — провести диагностику. Причём чем раньше, тем лучше. Если вовремя заменить неисправную деталь, удастся избежать более серьёзных проблем.
Например — зачастую автовладелец не обращает внимание на лёгкое постукивание думая, что это не имеет значения, в результате через какое-то время приходится покупать новую турбину, хотя изначально можно было обойтись небольшим ремонтом.
Следует отметить, что недостаточно знать, как работает турбина на дизеле — нужно идеально разбираться во всех её компонентах.
Только обладая соответствующими навыками, опытом и оборудованием получится провести качественный ремонт.
Именно поэтому рекомендуем не пытаться самостоятельно отремонтировать агрегат (можно сделать только хуже), а обратиться в компанию «Дизель-Мастер». Специализируемся на ремонте турбин с 1998 года, а потому знаем о них всё.
5 причин обратиться именно к нам:
При первых признаках дефекта — обратитесь к нам. Установим причину неисправности и предложим эффективный, экономичный способ её решения.
Турбонаддув – изучаем принцип работы
Без сомнений каждый из нас автолюбителей хотя бы раз за свою жизнь замечал на вполне обычном на первый взгляд автомобиле шильдик с заветной надписью «turbo».
Производители будто бы специально делают эти надписи крохотного размера, да ещё и в местах неприметных их размещают. А человек, который знает толк в подобных технологиях, обязательно заинтересованно остановится на пару минут.
Ниже мы подробно расскажем о том, почему же такой интерес вызывает маленькая неприметная надпись «turbo».
Технология турбонаддува
На данное время турбонаддув является одной из самых эффективных систем, повышающих мощность двигателя, при этом частота вращения коленчатого вала не увеличивается как и объём цилиндров.
Кроме повышения мощностных характеристик двигателя, турбонаддув также способствует экономии топлива, с расчётом на каждую единицу мощности, и снижению токсичности вырабатываемых газов за счёт того, что топливо сгорает полностью.
Система турбонаддува устанавливается как на бензиновые так и на дизельные двигатели. Но наибольшая эффективность турбонаддува проявляется именно на дизельных моторах. Достигается такой эффект за счёт высокой степени сжатия дизельного движка и достаточно низкой частоты вращения коленчатого вала.
Факторы, которые сдерживают применение турбонаддува на бензиновых двигателях на максимально возможном уровне – это возможная детонация, связанная с резким увеличением частоты оборотов двигателя, а также высокая температура отработанных газов, которая почти в два раза превышает показатели дизельных собратьев, и соответственно сильный нагрев турбонагнетателя.
Несмотря на конструктивные различия отдельных систем, выделим общее устройство турбонаддува – это воздухозаборник, затем воздушный фильтр, дроссельная заслонка, турбокомпрессор, интеркулер, впускной коллектор. Все данные элементы объединены между собой соединительными патрубками и напорными шлангами.
Принцип работы турбонаддува
Работа системы турбированного наддува основывается на эксплуатировании энергии отработанных газов. Отработанные газы вращают колесо турбины, которое далее посредством роторного вала вращает колесо компрессора. Колесо компрессора сжимает воздух и выталкивает его в систему.
Сжатый и нагретый воздух охлаждается интеркулером и далее поступает в цилиндры мотора.
Не смотря на то, что у турбонаддува нет жёсткой связи с коленвалом двигателя, эффективность нагнетательной системы по многим аспектам зависит от количества оборотов двигателя.
Пропорционально с увеличение частоты вращения коленчатого вала, увеличивается и энергия отработанных газов – турбина вращается быстрее, больший объём сжатого воздуха подаётся в цилиндры мотора.
В силу своих конструктивных особенностей у турбонаддува имеются и свои негативные проявления, среди которых можно выделить задержку прироста мощности двигателя при резком нажатии педали акселератора – эффект турбоямы, а также резкое увеличение давления наддува после выхода из турбоямы – турбоподхват. Эффект турбоямы обусловлен инерционностью системы (чтобы повысить давление наддува, в момент резкого нажатия педали газа, необходимо определённое время), которая ведёт к разности между необходимой мощностью и производительностью компрессора. Есть несколько способов, которые в состоянии решить данную проблему:
– установка турбины с изменяемой геометрией;
– установка двух компрессоров с последовательным или параллельным расположением (twin-turdo или bi-turdo);
– комбинированный наддув.
Турбина с изменяемой геометрией необходима для оптимизирования потока отработанных газов за счёт конвертации площади входного канала. Такая технология нашла широкое применение в дизельных двигателях с турбонаддувом TDI от компании Volkswagen.
Совет
Система, включающая в себя два параллельных турбокомпрессора, применяется зачастую на мощных V-образных двигателях (один компрессор на каждый ряд цилиндров). Система работает таким образом, что инерция двух маленьких турбин гораздо менее подааётся инерции чем одна большая.
С установкой на двигатель двух последовательно расположенных турбин, максимальная производительность системы достигается разными турбокомпрессорами на разных частотах двигателя.
Некоторые автомобильные производители заходят ещё дальше, устанавливая последовательно три турбокомпрессора – система triple-turbo от BMW и даже четыре – quad-turbo от Bugatti.
Комбинированный наддув объединяет в себе механический и турбонаддув. На низких оборотах коленвала двигателя сжатие воздуха производится механическим нагнетателем. С возрастанием оборотов механический нагнетатель передаёт эстафету турбокомпрессору, отключаясь при этом. Яркий пример такой системы – это двойной наддув TSI от Volkswagen.
Разновидности турбонаддува
Современное автомобилестроение насчитывает два основных вида турбин для двигателя: одинарные и двойные. Одинарные турбины устанавливаются, как правило, на двигатели с рядным расположением цилиндров: здесь происходит использование энергии выхлопных газов сразу от всех цилиндров двигателя с подачей воздуха также во все цилиндры.
Двойными турбинами оснащаются силовые агрегаты V-образного расположения цилиндров. Они включают в себя два турбокомпрессора, подающих воздух в определённые цилиндры.
Порой для роста мощности двигателя в таких турбинах используется перекрёстный выпускной коллектор, аккумулирующий выхлопные газы из всех цилиндров двигателя, далее направляя этот поток увеличенной мощности к компрессорам, повышая давление в турбине, что соответственно увеличивает и мощность двигателя.
Революционным прорывом стала технология, позволяющая изменять геометрию турбины. Она позволяет перенаправлять геометрию сопла турбины, при этом создавая более мощные воздушные потоки уже на низах, в результате чего мощность двигателя возрастает многократно.
Конструктивные особенности турбонаддува
Если вести речь о конкретных модификациях двигателя, а также о расположении разнообразных элементов в подкапотном пространстве, турбокомпрессор может оснащаться рядом дополнительных элементов. Рассмотрим две детали системы турбонаддува, как Wastegate и Blow-Off.
Клапан Blow-off
Блоу-офф – это перепускной клапан. Данный механизм устанавливается в воздушной системе. И располагается он между дроссельной заслонкой и выходом из компрессора. Основной задачей клапана блоу-офф является аредотвращение перехода компрессора в режим работы surge.
Для такого режима характерно резкое закрытие дроссельной заслонки. Если описать процесс простыми словами, то скорость потока воздуха и его расход в системе резко понижаются, но турбина по инерции ещё продолжает вращаться.
По инерции турбина обладает такой скоростью вращения, которая совсем не соответствует новым запросам двигателя и снизившемуся воздушному расходу.
Такие регулярные циклические резкие перепады давления воздуха могут плачевно сказаться на всей системе. Диагностировать такие скачки можно по характерному звуку, прорывающегося через компрессор, воздуха.
Со временем выходят из строя опорные подшипники турбины, ибо на них приходится максимальная нагрузка в результате резких перепадов давления при сбросе газа и дальнейшем режиме работы турбины в инерционном состоянии.
Blow-off устраняет данную проблему.
Он является своеобразным детектором перепада давлений в коллекторе, затем срабатывает за счёт вмонтированной пружины. Это выявляет момент резкого перекрытия дросселя.
Если произошло резкое закрытие дросселя, клапан стравливает в атмосферу лишний воздух, который появился в воздушном тракте от переизбытка давления.
Обратите внимание
Это существенно повышает безопасность турбокомпрессора и уберегает его от избыточных нагрузок, приводящих к последующему разрушению.
Клапан Wastegate
Данное технологическое решение является механическим клапаном. Вайстгейт устанавливается либо на части турбины, либо непосредственно на впускном коллекторе.
Основной функцией данного устройства является обеспечение контроля за давлением, создаваемым турбокомпрессором. Отметим, что некоторые из дизельных силовых агрегатов в своей конструкции обходятся без вайстгейта.
Для бензиновых моторов, в большинстве своём, этот клапан просто обязательная необходимость.
Главная задача вайстгейта заключается в обеспечении беспрепятственного выхода отработанных газов из системы, не проводя их через турбину.
Запуск выхлопных газов в обход турбины позволяет контролировать необходимое количество их энергии. Взаимосвязь, как на ладони, ведь именно отработанные газы вращают через коленчатый вал колесо компрессора.
Благодаря этому способу контроль за давлением, создаваемом в компрессоре, стало осуществлять гораздо проще.
Wastegate бывает как встроенный, так и внешний. Встроенный вайстгейт уже имеет заслонку, встроенную в турбинный хаузинг. Хаузинг – это улитка турбины, которую в народе так привыкли называть.
Дополнительно в wastegate установлен пневматический актуатор, а также от него идут тяги к дроссельной заслонке. Wastegate внешнего типа является клапаном, что установлен перед турбиной на выпускной коллектор.
Важно
Не можем не заметить, что внешний вайстгейт обладает одним неоспоримым преимуществом в сравнении с его встроенным братом.
А дело заключается в том, что обходной воздушный поток, сбрасываемый им, можно возвращать в выхлопную систему обратно, а на спорткарах можно просто осуществить прямой выброс в атмосферу. Это заметно улучшает прохождение выхлопных газов через турбину благодаря разнонаправленным потокам.
Недостатки турбонаддува
В силу своих конструктивных особенностей у турбонаддува имеются и свои негативные проявления, среди которых можно выделить задержку прироста мощности двигателя при резком нажатии педали акселератора – эффект турбоямы, а также резкое увеличение давления наддува после выхода из турбоямы – турбоподхват.
Повышение мощности двигателя с сохранением его общих характеристик, то есть форсирование приводит к интенсивному износу узлов, в следствии снижается ресурс силового агрегата. Турбинам необходимо также и применение специальных сортов моторных масел и строгое соблюдение сроков проведения технического обслуживания, зарекомендованных производителем.
Ещё более прихотлив воздушный фильтр. Возрастающее давление картерных газов существенно снижает ресурс турбины. Если при таких условиях турбина будет продолжать работать длительный период, то это неизбежно приведёт к масляному голоданию и последующей поломке турбокомпрессора.
А если будет повреждён этот агрегат, то есть немалый процент выхода из строя всего силового агрегата.
Принцип работы турбины: описание, устройство, особенности :
Для того, чтобы увеличить мощность и крутящий момент двигателя, человечество придумало массу устройств и агрегатов. Самый простой метод – пойти на увеличение объема камеры сгорания. Чем больше топлива попадет в цилиндр, тем больше произведется полезной работы. Но здесь возникают проблемы.
Во-первых, размеры такого мотора могут быть запредельными, а во-вторых, эксплуатация такого ДВС ввиду высокого расхода топлива будет нерентабельной. Поэтому в последнее время все чаще автопроизводители оснащают свои машины турбиной. Что это за элемент.
и в чем заключается принцип работы турбины? Узнаем подробно в нашей статье.
Характеристика
Турбина – это элемент впускной системы двигателя, который служит для увеличения давления воздуха за счет применения энергии отработавших газов. Благодаря ее работе, возрастает масса воздуха в камере сгорания.
Это позволяет ускорить такты работы двигателя и увеличить его крутящий момент. Также отметим, что первые турбины имели механический привод. Принцип работы такой турбины заключался в преобразовании энергии от коленчатого вала.
С последним элемент соединялся путем ременной передачи. Но вскоре такие агрегаты перестали использоваться.
Сейчас все производители применяют газовую турбину, принцип работы которой позволяет увеличить КПД двигателя на 80 процентов вместо 30.
Где используется
В основном, такой агрегат можно встретить на современных автомобилях. Но используется данный нагнетатель не на всех ДВС. Сдерживающим фактором применения турбины на бензиновых моторах является высокая степень детонации. Она связана с увеличением частоты вращения ДВС и огромной температурой выхлопных газов (до тысячи градусов).
Ввиду этого часто используется турбина на дизельном двигателе. Принцип работы такого ДВС несколько иной. Здесь меньший риск детонации, а температура газов не превышает 600 градусов. Особенно часто компрессоры встречаются на коммерческом транспорте. Невозможно представить современный автобус или магистральный тягач, не оснащенный такой турбиной.
Если говорить о марках, то турбина устанавливается на следующие авто:
- «Фольксваген».
- «Мерседес».
- «Вольво».
- «Мазда».
- «Ауди».
- «Рено».
- «Тойота».
Есть и другие сферы, где применяется подобный элемент. Например, это электростанции и ДВС кораблей. Но здесь используется уже паровая турбина, принцип работы которой мы рассмотрим немного позже.
Недостатки
Почему данный элемент присутствует не на всех двигателях внутреннего сгорания? В первую очередь, применение турбины увеличивает себестоимость производства авто. Помимо самой улитки, требуется еще ряд других элементов.
К тому же, для работы с турбиной двигателю нужна другая более крепкая поршневая система и блок. Это тоже влечет за собой дополнительные расходы. Также среди недостатков можно отметить так называемую турбояму (когда мотор не может набрать обороты за нужное время). Причинами данного явления является инерционность компрессора.
Конструкция
Итак, давайте рассмотрим устройство и принцип работы турбины. А состоит данный элемент из трех основных составляющих:
- Центрального корпуса.
- Центробежного компрессора.
- Улитки.
В конструкцию последней входит турбинное и компрессорное колеса, вал ротора, подшипники скольжения и уплотнительные кольца. Все это заключено в крепкий металлический термостойкий корпус. Поскольку принцип работы турбины двигателя основан на использовании энергии выхлопных газов, горячая часть улитки может раскаляться до тысячи и более градусов Цельсия.
Вспомогательные элементы
Поскольку турбина входит в состав впускной системы, ее работа невозможна без использования воздушного фильтра, дроссельной заслонки, а также интеркулера.
Последний призван охладить кислород, который нагнетается в камеру под давлением. Чем холоднее воздух в интеркулере, тем лучше сгорает смесь в цилиндрах. Также в конструкции не обходится без соединительных и масляных шлангов.
Как работает
Стоит отметить, что принцип работы турбины на бензиновом двигателе такой же, как и на дизельном. Во время работы ДВС вырабатываются выхлопные газы. Они поступают в корпус (горячую часть улитки), где двигаются по лопаткам турбинного колеса. Последнее раскручивается до невероятных скоростей – 100 и более тысяч оборотов в минуту.
Поскольку турбинное колесо жестко соединено с валом, крутящий момент передается на вторую холодную часть турбины. Та, в свою очередь, начинает захватывать кислород из атмосферы. Он проникает внутрь после того, как пройдет через фильтр. Далее воздух под давлением попадает во впускной коллектор, где смешивается с топливом и проникает в камеру сгорания.
В качестве материалов для корпуса турбины используются жаропрочные марки стали и железоникелевый сплав.
Совет
Производительность компрессора зависит от ее формы и габаритных размеров. Чем больше ее диаметр, тем больше воздуха засасывается во впускной коллектор. Но нельзя постоянно увеличивать размеры компрессора. Это может привести к турбозадержке.
Малая турбина раскручивается значительно быстрее до номинальной скорости. Но на пике имеет меньшую производительность. Поэтому размеры и форма элемента подбираются строго индивидуально для каждого ДВС. Нельзя установить агрегат от бензинового авто на дизельный, и наоборот.
Хоть и имеет одинаковый принцип работы турбина, действовать она будет иначе на разных авто.
Важный момент: для регулирования давления наддува в конструкции предусмотрен специальный перепускной клапан. Он имеет пневматический привод, а управляется ЭБУ двигателя.
Система смазки
Это неотъемлемая составляющая любой турбины. Принцип работы системы смазки простой. Масло подается между подшипником и корпусом компрессора через множество каналов под давлением.
Но не стоит думать, что эта система нужна только для смазки. Также она охлаждает нагретые детали компрессора. На некоторых двигателях турбина сопряжена с общей системой охлаждения.
Благодаря этому, достигается лучшее охлаждение, но такая конструкция значительно сложнее и дороже в производстве.
Дабы избавиться от турбоямы, производители постоянно совершенствуют конструкцию турбины на дизеле. Принцип работы ее остается прежним, но меняются следующие моменты:
- Масса компрессора. Турбина изготавливается из одновременно легких и прочных материалов (например, из керамики).
- Конструкция подшипников. Чем меньше потери на трение, тем выше производительность турбины. Колесо легче раскручивается до номинальных значений.
Типы турбин
На данный момент существует несколько популярных типов компрессоров:
- Раздельный. Он имеет два сопла для каждой пары цилиндров и два входа для отработавших газов. Первое сопло предназначено для быстрого реагирования, второе служит для максимальной производительности. В конструкции есть разделенные выпускные каналы. Сделано это для предотвращения перекрытия каналов при выпуске выхлопных газов.
- Компрессор с переменным соплом. Также он известен, как турбина с изменяемой геометрией. Применяется на моторах с маркировкой TDI от «Фольксваген». Здесь в конструкции имеется 9 подвижных лопастей. Они могут регулировать поток выхлопных газов, что идут к турбине. Угол наклона лопастей – регулируемый, что позволяет согласовать давление нагнетаемого воздуха и скорость движения газов с оборотами ДВС.
Для большей производительности на автомобиль может быть установлено два компрессора. Такие системы получили маркировку «Твин-турбо».
Устанавливаются данные механизмы последовательно. При этом первая турбина работает на низких оборотах, а вторая на высоких. На V-образных моторах нагнетатели устанавливаются параллельно (на каждый ряд по одной турбине). Как показывает практика, установка двух небольших компрессоров значительно эффективнее, чем применение одного, но большого.
Паровая турбина
Принцип работы ее немного иной. Пар, который образуется в котле, под давлением попадает на крыльчатку турбины. Последняя совершает обороты, тем самым, вырабатывая механическую энергию. Обычно такая турбина соединена с генератором и применяется на электростанциях. Благодаря механической энергии, генератор производит электричество. Мощность таких агрегатов может достигать 1000 МВт.
Однако данный показатель существенно зависит от перепада давления пара на входе и выходе. Также подобные турбины применяются для привода питательного насоса, на кораблях и судах с ядерной установкой. Что касается военных кораблей, здесь применяется газовая турбина.
Принцип работы ее заключается в следующем. Газ поступает через сопловой аппарат компрессора в область низкого давления. При этом он расширяется и ускоряется. Затем поток газа двигает лопатки турбины. Последние передают усилия на вал через диски.
Таким образом создается полезный крутящий момент.
В заключение
Итак, мы выяснили принцип работы дизельной турбины, а также бензиновой и паровой. Как видите, данные элементы устанавливаются с единой целью – выработать полезный крутящий момент. В случае с автомобилями он тратится на подачу воздуха под давлением во впуск. А на электростанциях турбина необходима для работы генератора, что вырабатывает ток.
Устройство и принцип работы турбины
by admin · Апрель 1, 2010
Турбина (турбокомпрессор) стала определяющим агрегатом в деле увеличения мощности моторов.
Что такое турбина и для чего она нужна?
Турбина — устройство в автомобиле, которое направлено на увеличение давления во впускном коллекторе автомобиля для того, чтобы обеспечить большее поступление воздуха, а значит и кислорода, в камеру сгорания.
Главное назначение турбины – с ее помощью можно значительно увеличить мощность автомобиля.
При увеличении давления во впускном коллекторе на 1 атмосферу в камеру сгорания попадет в два раза больше кислорода, а значит от небольшого турбового двигателя можно ожидать мощности как от атмосферника с объемом в два раза больше — грубая теоретическая арифметика не лишенная смысла…
Принцип работы турбокомпрессора
Принцип работы турбины несложен: горячие выхлопные газы через выпускной коллектор поступают в горячую часть турбины, проходят через крыльчатку горячей части приводя ее и вал на который она крепится в движение.
Обратите внимание
На этом же вале закреплена крыльчатка самого компрессора в холодной части турбины, эта крыльчатка при вращении создает давление во впускном тракте и впускном коллекторе, что обеспечивает большее поступление воздуха в камеру сгорания.
Устройство турбины
Турбина состоит из двух улиток — улитки компрессора, через которую всасывается воздух и нагнетается во впускной коллектор, и улитки горячей части, через которую проходят выхлопные газы вращая колесо турбины и выходят в выхлопной тракт. Из крыльчатки компрессора и крыльчатки горячей части. Из шарикоподшипникового картриджа. Из корпуса, который соединяет обе улитки, держит подшипники, так же в корпусе находится охлаждающий контур.
В процессе работы турбина подвергается очень большим термодинамическим нагрузкам. В горячую часть турбины попадают выхлопные газы очень большой температуры 800-9000 °С, поэтому корпус турбины изготавливают из чугуна особого состава и особого способа отливки.
Частота вращения вала турбины достигает 200 000 об/мин и более, поэтому изготовление деталей требует большой точности, подгонки и балансировки. Помимо этого в турбине высокие требования к используемым смазочным материалам. В некоторых турбинах система смазки служит так е системой охлаждения подшипниковой части турбины.
Система охлаждения турбин
Система охлаждения турбин двигателя служит для улучшения теплоотдачи частей и механизмов турбокомпрессора.
Существует два самых распространенных способа охлаждения деталей турбокомпрессора — охлаждение маслом, которое используется для смазки подшипников и комплексное охлаждение маслом и антифризом из общей системы охлаждения автомобилем.
Оба способа имеют ряд преимуществ и недостатков.
Охлаждение маслом.
Преимущества:
- Более простая конструкция
- Меньшая стоимость изготовления самой турбины
Недостатки:
- Меньшая эффективность охлаждения по сравнению с комплексной системой
- Более требовательна к качеству масла и к его более частой смене
- Более требовательна к контролю за температурным режимом масла
Изначально, большинство серийных двигателей с турбонаддувом оснащались тубинами с масляным охлаждением. При прохождении через шарикоподшипниковую часть масло сильно нагревалось.
Тогда, когда температура выходила за пределы нормального рабочего температурного диапазона, масло начинало закипать, коксоваться забивая каналы и ограничивая доступ смазки и охлаждения к подшипникам. Это приводило к быстрому износу, заклиниванию и дорогостоящему ремонту.
Причин у неполадки могло быть несколько — некачественной масло или не рекомендованное для данного типа двигателей, превышение рекомендованы сроков замены масла, неисправности в системе смазки двигателя и пр.
Комплексное охлаждение маслом и антифризом
Преимущества:
- Большая эффективность охлаждения
Недостатки:
- Более сложная конструкция самого турбокомпрессора, как следствие большая стоимость
При охлаждении турбины маслом и антифризом повышается эффективность и такие проблемы, как закипание и коксование масла, практически не встречаются. Но данная систем охлаждения имеет более сложную конструкцию т.к.
имеет раздельные масляный контур и контур охлаждающей жидкости. Масло как и прежде служит для смазки подшипников и для охлаждения, а антифриз, который используется из общей системы охлаждения двигателя, не дает перегреться и закипеть маслу.
Как следствие увеличивается стоимость самой конструкции.
При работе турбины воздух под действием компрессора сжимается и, как следствие, очень сильно греется, что приводит к нежелательным последствиям т.к. чем выше температура воздуха, тем меньшее количество кислорода в нем содержится — тем меньше эффективность наддува. С этим явлением призван бороться интеркулер — промежуточный охладитель воздуха.
Важно
Нагрев воздуха не единственная проблема, с которой пытаются справиться конструкторы при проектировании турбодвигателя. Насущной проблемой является инерционность турбины (лаг турбины, турбояма) — задержка в реакции мотора на открытие дроссельной заслонки.
Турбина выходит на пик своих возможностей при определенных оборотах двигателя, отсюда и появилось мнение, что турбина включается при определенных оборотах. Турбина в большинстве случаев, работает всегда, а значение оборотов при которых ее эффективность максимальная у каждого двигателя и у каждой турбины разные.
В погоне за решением этой проблемы появились системы их двух турбин (твин-турбо, twin-turbo, би-турбо, biturbo), твин-скрол (twin-scroll) турбины, турбины с изменяемой геометрией сопла и изменяемым углом наклона крыльчатки (VGT), изменяются материалы частей чтобы повысить прочность и увеличить вес (керамические лопатки крыльчатки) и пр.
Twin-turbo (твин-турбо) — система при которой используются две одинаковые турбины. Задача данной системы повысить объем или давление поступающего воздуха. Используется когда необходима максимальная мощность на высоких оборотах, например в драг-рейсинге. Такая система реализована на легендарном японском автомобиле Nissan Skyline Gt-R с двигателем rb26-dett.
Такая же система, но с маленькими одинаковыми турбинами позволяет добиться прироста мощности при небольших оборотах и держать наддув постоянным до красной зоны.
Biturbo (би-турбо) — систем а с двумя разными турбинами, которые соединены последовательно.
Система устроена таким образом, что при низких оборотах работает маленькая турбина, обеспечивая хороший отклик на малых оборотах, при определенных условиях «включается» большая турбина и обеспечивает наддув при высоких оборотах.
Это позволяет автомобилю уменьшить лаг двигателя и получить хороший прирост производительности во всем диапазоне работы двигателя.
Такая систем турбонаддува используется в автомобилях BMW biturbo.
Турбина с изменяемой геометрией (VGT) — система при которой лопатки крыльчатки в горячей части могут изменять угол наклона к потоку выхлопных газов.
При малых оборотах двигателя пропускное сечение прохода выхлопных газов становится более узкое и «выхлоп» проходит с большей скоростью и большей отдачей энергии.
Совет
Когда обороты двигателя увеличиваются проходное сечение становится шире и и уменьшается сопротивление движению выхлопных газов, но при этом достаточно энергии для создания необходимого давления компрессором.
Чаще систему VGT используют на дизельных двигателях т.к. там меньше тепловые нагрузки, меньшая скорость вращения ротора турбины.
Twin-scroll ( двойная улитка) — система состоит из двойного контура движения выхлопных газов энергия которых вращает один ротор с крыльчаткой и компрессором.
При этом существует два типа реализации когда выхлопные газы идут по обоим контурам сразу, при этом система работает как twin-turbo в одном корпусе — выхлопные газы делятся на два потока каждый из которых идут в свой контур горячей части раскручивая ротор турбины.
Второй тип реализации работает на подобии системы biturbo — горячая часть имеет два контура с разной геометрией, при низких оборотах выхлопные газы направляются по меньшему контуру, который увеличивает скорость и энергию прохождения за счет небольшого диаметра, при повышении оборотов двигателя выхлопные газы двигаются по контуру диаметр которого больше — тем самым сохраняется рабочее давление в системе впуска и не создается запора на пути выхлопных газов. Это все регулируется клапанами, которые переключают поток из одного контура в другой.